\dm_csml_event_details UCL ELLIS

A PAC-Bayesian bound for deterministic classifiers


Speaker

Eugenio Clerico

Affiliation

University of Oxford

Date

Friday, 18 November 2022

Time

12:00-13:00

Location

Function Space, UCL Centre for Artificial Intelligence, 1st Floor, 90 High Holborn, London WC1V 6BH

Link

https://ucl.zoom.us/j/97245943682

Event series

Jump Trading/ELLIS CSML Seminar Series

Abstract

We establish a disintegrated PAC-Bayesian bound for classifiers that are trained via continuous-time (non-stochastic) gradient descent. Contrarily to what is standard in the PAC-Bayesian setting, our result applies to a training algorithm that is deterministic, conditioned on a random initialisation, without requiring any de-randomisation step. We provide a broad discussion of the main features of the bound that we propose, and we study analytically and empirically its behaviour on linear models, finding promising results.

Biography

Eugenio Clerico is a final year DPhil student, supervised by Arnaud Doucet and George Deligiannidis. Before arriving in Oxford, he obtained a Bachelor’s degree in Physics at the University of Pavia (Italy) and a Master’s degree in theoretical Physics at the École Normale Supérieure in Paris. His current research lies in statistical learning theory and its applications to modern deep learning algorithms. More precisely, he has been working mostly on generalisation bounds in the PAC-Bayesian and information-theoretic frameworks, and on the Gaussian behaviour of neural networks in the limit of infinite width.