\dm_csml_event_details UCL ELLIS

Doubly Stochastic Variational Inference for Deep Gaussian Processes


Speaker

Hugh Salimbeni

Affiliation

Imperial College London

Date

Friday, 20 October 2017

Time

13:00-14:00

Location

Zoom

Link

Roberts Building G08 Sir David Davies LT

Event series

Jump Trading/ELLIS CSML Seminar Series

Abstract

Gaussian processes (GPs) are a good choice for function approximation as they are flexible, robust to over-fitting, and provide well-calibrated predictive uncertainty. Deep Gaussian processes (DGPs) are multi-layer generalisations of GPs, but inference in these models has proved challenging. Existing approaches to inference in DGP models assume approximate posteriors that force independence between the layers, and do not work well in practice. We present a doubly stochastic variational inference algorithm, which does not force independence between layers. With our method of inference we demonstrate that a DGP model can be used effectively on data ranging in size from hundreds to a billion points. We provide strong empirical evidence that our inference scheme for DGPs works well in practice in both classification and regression.

Biography