\dm_csml_event_details UCL ELLIS

Unbiased Bayes for Big Data: Paths of Partial Posteriors


Heiko Strathmann (covering co-author Mark Girolami who cannot make it)


Gatsby Unit, UCL


Friday, 06 March 2015






Roberts G06 (Sir Ambrose Fleming lecture theatre)

Event series

DeepMind/ELLIS CSML Seminar Series


A key quantity of interest in Bayesian inference are expectations of functions with respect to a posterior distribution. Markov Chain Monte Carlo is a fundamental tool to consistently compute these expectations via averaging samples drawn from an approximate posterior. However, its feasibility is being challenged in the era of so called Big Data as all data needs to be processed in every iteration. Realising that such simulation is an unnecessarily hard problem if the goal is estimation, we construct a computationally scalable methodology that allows unbiased estimation of the required expectations -- without explicit simulation from the full posterior. The scheme's variance is finite by construction and straightforward to control, leading to algorithms that are provably unbiased and naturally arrive at a desired error tolerance. This is achieved at an average computational complexity that is sub-linear in the size of the dataset and its free parameters are easy to tune. We demonstrate the utility and generality of the methodology on a range of common statistical models applied to large-scale benchmark and real-world datasets.

Speaker website